Chem. Ber. 112, 3034 - 3036 (1979)

Ligandstruktur und Komplexierung, XLVIII¹⁾

Alkalimetallsalz- und Harnstoff-Komplexe von Oligomethylendiethern

Ulrich Heimann und Fritz Vögtle*

Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, D-5300 Bonn 1

Eingegangen am 26. März 1979

Ligand Structure and Complexation, XLVIII 1)

Alkali Metal Salt and Urea Complexes of Oligomethylene Diethers

Crystalline complexes with sodium perchlorate have been obtained of 6a - d, g, 7a, and also of 8-methoxyquinoline (8) (table 2). 1: 1 Complexes with urea have been isolated with 6f, g,

Nicht nur cyclische Oligoethylenglycolether vom Typ [18]Krone-6 sowie Cryptanden komplexieren Alkali- und Erdalkalimetall-Ionen²), sondern, wie wir wiederholt zeigen konnten, auch offenkettige Analoga³), von denen wir zahlreiche kristalline Komplexe isoliert haben.

Während zunächst starre Donorendgruppen an den beiden Enden des offenkettigen Oligoethylenglycolether-Systems wie in 1 und 2 erforderlich schienen (Do = Donorzentrum in der Endgruppe)³⁾, gelang später auch die Darstellung kristalliner Komplexe ausgehend von Liganden der Typen 3, 4 mit nur einer Donorendgruppe bzw. von entsprechend langkettigen Glyme-Verbindungen 5^{4,5)}. Die Anzahl der Oligoethylenglycolether-Einheiten kann bei Vorhandensein freier Hydroxyl-Enden herabgesetzt werden; selbst Ethylenglycol liefert noch kristalline Komplexe^{6,7)}.

Ausgangspunkt der vorliegenden Untersuchung war die Frage, ob nur durch Alkanketten verbrückte starre Donorendgruppen – wie in 6 und 7 –, welche die Komplexierung von Oligoethylenglycolether-Einheiten nachweisbar verstärken 8), zur Bildung kristalliner Alkali/Erdalkalisalz-Komplexe in der Lage sind. In einzelnen Fällen waren solche Versuche bisher nicht gelungen 9).

© Verlag Chemie, GmbH, D-6940 Weinheim, 1979 0009 – 2940/79/0808 – 3034 \$ 02.50/0

Darstellung von 6, 7 und Komplexierung

Zur Darstellung der 1,ω-Bis(8-chinolyloxy)-Verbindungen 6 sowie der 2,6-Dimethoxyphenolether 7 wurde entsprechend der Synthese der analogen Oligoethylenglycolether vom 8-Hydroxychinolin-Kaliumsalz bzw. 2,6-Dimethoxyphenol-Kaliumsalz und 1,ω-Dihalogenalkanen ausgegangen.

Tab. 1. Daten der synthetisierten Donormoleküle

Nr.	Schmp. [°C] (Ausb., %)	Summenformel (Molmasse)	M [⊕] (MS)	Analyse C H N
6a	118 (15)	C ₂₁ H ₁₈ N ₂ O ₂ (330.4)	330	Ber. 76.34 5.49 8.48 Gef. 76.55 5.58 8.54
6 b	123 (36)	$C_{22}H_{20}N_2O_2$ (344.4)	344	Ber. 76.72 5.85 8.13 Gef. 76.57 5.84 8.27
6 c	71 – 73 (32)	$C_{23}H_{22}N_2O_2$ (358.4)	358	Ber. 77.07 6.19 7.82 Gef. 77.09 6.24 7.86
6 d	143 – 145 (31)	$C_{24}H_{24}N_2O_2$ (372.5)	372	Ber. 77.39 6.50 7.52 Gef. 77.39 6.70 7.21
6 g	58 - 60 (25)	$C_{29}H_{34}N_2O_2$ (442.6)	442	Ber. 78.70 7.74 6.33 Gef. 78.89 7.74 6.34
7 b	64 - 65 (36)	$C_{19}H_{24}O_6$ (348.4)	348	Ber. 65.50 6.94 - Gef. 65.47 6.98 -
7 c	95 – 97 (38)	$C_{20}H_{26}O_6 \ (362.4)$	362	Ber. 66.28 7.23 - Gef. 66.14 7.22 -

Die kristallinen Komplexe, die die Donormoleküle 6, 7 mit Natriumperchlorat und Harnstoff lieferten, sind in Tab. 2 aufgenommen. Selbst bei Fehlen einer Oligoethylenglycolether-Kette und Vorhandensein lediglich zweier starrer Donorendgruppen mit zusammen nur 4 Donoratomen ist also die Bildung kristalliner Salzkomplexe im offenkettigen System möglich.

Dies gelingt sogar mit dem zum Vergleich herangezogenen einfachen 8-Methoxychinolin (8) 10), von dem solche Komplexe bisher nicht beschrieben waren. Wie erwartet wird hierbei keine 1:1-, sondern eine 3:2-(Ligand: Salz)Stöchiometrie gefunden. Damit ist weiter gezeigt, daß schon bei Anwesenheit zweier günstiger Donorzentren in einem Molekül, insbesondere Heteroatomen wie Stickstoff oder Sauerstoff, eine Komplexierung mit Alkali- bzw. Erdalkalimetallsalzen in Betracht zu ziehen ist.

Während bei den Liganden des Typs 6 Natriumperchlorat-Komplexe für n=1-4 und 9 isoliert werden können, ist dies bei den Liganden des Typs 7 bisher nur für n=0 möglich, und zwar im Verhältnis 2:1 (Ligand: Salz); mit LiClO₄ ist früher schon 1:1-Stöchiometrie gefunden worden 3 c).

Ebenso interessant wie die Komplexierung von Salzen scheint uns die stöchiometrische Komplexbildung der Liganden 6f, g mit Harnstoff zu sein¹¹). Während Chinolin und Harnstoff Addukte im Verhältnis 1:1 bilden¹²), werden in unserem Fall wahrscheinlich zwei 8-Oxychinolin-Einheiten zur Komplexierung herangezogen.

Experimenteller Teil

Allgemeines Verfahren zur Darstellung der Liganden 6, 7: 5.80 g (40.0 mmol) 8-Chinolinol bzw. 6.16 g (40.0 mmol) 2,6-Dimethoxyphenol und 2.24 g (40.0 mmol) Kaliumhydroxid werden in 150 ml siedendem n-Butanol gelöst und innerhalb 2 h 20.0 mmol der entsprechenden 1,ω-Dibromverbindung in 50 ml n-Butanol zugetropft. Danach wird noch 10 h unter Rückfluß erhitzt. Nach Filtrieren wird i. Vak. eingeengt, mit Chloroform aufgenommen und 1 mal mit verd. Natronlauge und 2mal mit Wasser gewaschen. Die Chloroformphase wird über Natriumsulfat ge-

trocknet, i. Vak. eingeengt und an Kieselgel (Macherey, Nagel & Co., Düren, 0.063 – 0.1 mm, Eluent: Toluol/Ethanol 4: 1) chromatographiert. Anschließend werden die Liganden aus Essigester bzw. Methanol umkristallisiert. Daten und Analysen siehe Tab. 1. Namen: 1,3-Bis(8chinolyloxy)propan (6a), 1,4-Bis(8-chinolyloxy)butan (6b), 1,5-Bis(8-chinolyloxy)pentan (6c), 1,6-Bis(8-chinolyloxy)hexan (6d), 1,11-Bis(8-chinolyloxy)undecan (6g), 1,3-Bis(2,6-dimethoxyphenoxy)propan (7b), 1,4-Bis(2,6-dimethoxyphenoxy)butan (7c).

Die Darstellung der in Tab. 2 aufgeführten Komplexe erfolgt wie üblich in Essigester/ Methanol 13).

Tab. 2. Ausbeuten und physikalische Daten der synthetisierten kristallinen Komplexe

Ligand	eingesetztes Salz (S) bzw. Harnstoff	Komplex Schmp. [°C]	₀₀ Ausb.	Stöchio-		Analyse		—— е
(L) Nr.				metrie L : S		С	H	N
6 a	NaClO ₄	229 – 232	58	1:1		55.70 55.90		6.19 6.16
6 b	NaClO ₄	232 – 233	58	1:1		56.60 56.57		6.00 5.78
6 c	NaClO ₄	184 – 185	64	1:1		57.45 57.46		5.83 5.41
6 d	NaClO ₄	214 – 217	65	1:1	Ber. Gef.	58.25 58.05		5.66 5.80
6 f	Harnstoff	125 (Zers.)	55	1:1		71.28 71.01		
6 g	NaClO ₄	177 – 180	62	1:1		61.64 61.53		4.96 5.07
6 g	Harnstoff	120 (Zers.)	33	1:1		71.68 71.38		
7 a	NaClO ₄	149 – 151	23	2:1		54.65 54.55		_
8	NaClO ₄	168 – 169	31	3:2	Ber. Gef.	49.88 49.79		5.82 5.67

Literatur

- 1) XLVII. Mitteil.: U. Elben, H.-B. Fuchs, K. Frensch und F. Vögtle, Liebigs Ann. Chem. 1979,
- ²⁾ Übersicht: F. Vögtle und E. Weber, Kontakte (Merck) 1/77, 11; 2/77, 16; 3/77, 36; 2/78, 16; F. Vögtle, E. Weber und U. Elben, ebenda 3/78, 32; 1/79, 3.
- 3) 3a) E. Weber und F. Vögtle, Tetrahedron Lett. 1975, 2415. 3b) F. Vögtle und H. Sieger, Angew. Chem. 89, 410 (1977); Angew. Chem., Int. Ed. Engl. 16, 396 (1977). - 3c) W. Raßhofer, G. Oepen und F. Vögtle, Chem. Ber. 111, 419 (1978).
- 4) U. Heimann und F. Vögtle, Angew. Chem. 90, 211 (1978); Angew. Chem., Int. Ed. Engl. 17, 197 (1978).
- ⁵⁾ H. Sieger und F. Vögtle, Angew. Chem. **90**, 212 (1978); Angew. Chem., Int. Ed. Engl. **17**, 198 (1978).
- 6) F. Vögtle, H. Sieger und W. M. Müller, J. Chem. Res. (S) 1978, 398; (M) 1978, 4898.
- 7) H. Sieger und F. Vögtle, Tetrahedron Lett. 1978, 2709.
- 8) 8a) B. Tümmler, G. Maass, E. Weber, W. Wehner und F. Vögtle, J. Am. Chem. Soc. 99, 4863 (1977). - 8b) B. Tümmler, G. Maass, F. Vögtle, H. Sieger, U. Heimann und E. Weber, ebenda 101, (1979), im Druck.
- 9) E. Weber, Dissertation, Univ. Würzburg 1976.
 10) C. Bedall und O. Fischer, Ber. Dtsch. Chem. Ges. 14, 2570 (1881).
- 11) Vgl. W. Raßhofer und F. Vögtle, Tetrahedron Lett. 1978, 309.
- 12) B. Wendt und W. Ried, Angew. Chem. 63, 218 (1951).
- 13) E. Weber und F. Vögtle, Chem. Ber. 109, 1803 (1976).

[104/79]